SPECIFICATIONS

PXIe-5764

16-Bit, 1 GS/s, 4-Channel PXI FlexRIO Digitizer

This document lists the specifications for the PXIe-5764. Specifications are subject to change without notice. For the most recent device specifications, refer to *ni.com/support*.

Contents

Definitions	1
Conditions	2
Digital I/O	. 2
Digital I/O Single-Ended Channels	2
Digital I/O High-Speed Serial MGT	3
Reconfigurable FPGA	
Onboard DRAM	5
Analog Input	. 5
General Characteristics	. 5
Typical Specifications	. 5
CLK/REF IN	13
General Characteristics	13
Driver and Application Software	16
Bus Interface	16
Maximum Power Requirements	17
Physical	17
Environment	17
Operating Environment	17
Storage Environment	17
Shock and Vibration	
TCLK Specifications	18
Intermodule Synchronization Using NI-TClk for Identical Modules	18

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- *Measured* specifications describe the measured performance of a representative model.

Specifications are Typical unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature of 23 °C \pm 5 °C
- Installed in chassis with slot cooling capacity \geq 58 W

Digital I/O

Connector	Molex TM Nano-Pitch I/O TM
5.0 V Power	±5%, 50 mA maximum, nominal

Signal	Туре	Direction	
MGT Tx± <30>1	Xilinx UltraScale GTH	Output	
MGT Rx± <30>1	Xilinx UltraScale GTH	Input	
DIO <70>	Single-ended	Bidirectional	
5.0 V	DC	Output	
GND	Ground		

Table 1. Digital I/O Signal Characteristics

Digital I/O Single-Ended Channels

Number of channels	8
Signal type	Single-ended
Voltage families	3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V
Input impedance	100 kΩ, nominal
Output impedance	50 Ω, nominal

¹ Multi-gigabit transceiver (MGT) signals are available on devices with KU040 and KU060 FPGAs only.

Direction control	Per channel
Minimum required direction change latency	200 ns
Maximum output toggle rate	60 MHz with 100 µA load, nominal

Voltage Family	V _{IL}	V _{IH}	V _{OL} (100µA load)	V _{OH} (100µA load)	Maximum DC Drive Strength
3.3 V	0.8 V	2.0 V	0.2 V	3.0 V	24 mA
2.5 V	0.7 V	1.6 V	0.2 V	2.2 V	18 mA
1.8 V	0.62 V	1.29 V	0.2 V	1.5 V	16 mA
1.5 V	0.51 V	1.07 V	0.2 V	1.2 V	12 mA
1.2 V	0.42 V	0.87 V	0.2 V	0.9 V	6 mA

Table 2. Digital I/O Single-Ended DC Signal Characteristics²

Digital I/O High-Speed Serial MGT³

Note M

Note $\,$ MGTs are available on devices with KU040 and KU060 FPGAs only.

Data rate	500 Mbps to 16.375 Gbps, nominal	
Number of Tx channels	4	
Number of Rx channels	4	
I/O AC coupling capacitor	100 nF	

MGT TX± Channels

Minimum differential output voltage ⁴	170 mV pk-pk into 100 Ω , nominal
I/O coupling	AC-coupled with 100 nF capacitor

MGT RX± Channels

Differential input voltage range	
\leq 6.6 Gb/s	150 mV pk-pk to 2000 mV pk-pk, nominal
> 6.6 Gb/s	150 mV pk-pk to 1250 mV pk-pk, nominal

² Voltage levels are guaranteed by design through the digital buffer specifications.

³ For detailed FPGA and High-Speed Serial Link specifications, refer to Xilinx documentation.

⁴ 800 mV pk-pk when transmitter output swing is set to the maximum setting.

Differential input resistance	100 Ω , nominal
I/O coupling	DC-coupled, requires external capacitor ${\ensuremath{\mathbb A}}$

Reconfigurable FPGA

PXIe-5764 modules are available with multiple FPGA options. The following table lists the FPGA specifications for the PXIe-5764 FPGA options.

	KU035	KU040	KU060
LUTs	203,128	242,200	331,680
DSP48 slices (25 × 18 multiplier)	1,700	1,920	2,760
Embedded Block RAM	19.0 Mb	21.1 Mb	38.0 Mb
Default timebase		80 MHz	
Timebase reference sources	PXI Express 100 MHz (PXIe_CLK100)		
Data transfers	DMA, interrupts, programmed I/O	DMA, interrupts, programmed I/O, multi-gigabit transceivers	
Number of DMA channels	60		

Table 3.	Reconfigurable	FPGA	Options
	ricconnigurable	I I UA	Options

Note The Reconfigurable FPGA Options table depicts the total number of FPGA resources available on the part. The number of resources available to the user is slightly lower, as some FPGA resources are consumed by board-interfacing IP for PCI Express, device configuration, and various board I/O. For more information, contact NI support.

Note For FPGA designs using the majority of KU040 or KU060 FPGA resources while running at clock rates over 150 MHz, the module may require more power than is available. If the module attempts to draw more than allowed per its specification, the module protects itself and reverts to a default FPGA personality. Refer to the getting started guide for your module or contact NI support for more information.

Onboard DRAM

(!)

Note DRAM is available on devices with KU040 and KU060 FPGAs only.

Memory size	4 GB (2 banks of 2 GB)
DRAM clock rate	1064 MHz
Physical bus width	32 bit
LabVIEW FPGA DRAM clock rate	267 MHz
LabVIEW FPGA DRAM bus width	256 bit per bank
Maximum theoretical data rate	17 GB/s (8.5 GB/s per bank)

Analog Input

Notice The maximum input signal levels are valid only when the module is powered on. To avoid permanent damage to the PXIe-5764, do not apply a signal to the device when the module is powered down.

General Characteristics

Number of channels	4, single-ended, simultaneously sampled
Connector type	SMA
Input impedance	50 Ω
Input coupling	AC or DC ⁵
Sample rate	
Internal Sample Clock	1 GHz
External Sample Clock	1 GHz
Analog-to-digital converter (ADC)	ADS54J60, 16-bit resolution

Typical Specifications

Full-scale input range (normal operating conditions)		
AC-coupled	$2.05~V_{pp}~(10.22~\text{dBm})$ at 10 MHz	
DC-coupled	2.00 V _{pp} (10 dBm)	

⁵ Only one analog input path type is populated.

Gain accuracy	
AC-coupled	±0.1 dB at 10 MHz
DC-coupled	±0.79% at DC
DC offset	
AC-coupled	±22 μV
DC-coupled	±363 µV
Bandwidth (-3 dB) ⁶	
AC-coupled	0.07 MHz to 1.15 GHz ⁷
DC-coupled	DC to 400 MHz

Table 4. Single Tone Spectral Performance

	AC-Coupled		DC-Coupled			
	Input Frequency		Input Frequency			
	10.1 MHz 123.1 MHz 199.1 MHz		10.1 MHz	123.1 MHz	199.1 MHz	
SNR ⁸ (dBFS)	69.8	68.7	67	68.7	67.5	65.8
SINAD ⁸ (dBFS)	68.7	67.6	66.7	68.1	67.1	65.3
SFDR (dBc)	-80.7	-81.8	-75.6	-76.6	-75.8	-73.4
ENOB ⁹ (Bits)	11.1	10.9	10.8	11.0	10.9	10.6

 \sim

Note Excludes ADC interleaving spurs.

Table 5. Noise Spectral Density

Module	nV/rt (Hz)	dBm/Hz	dBFS/Hz
AC-coupled	9.7	-147.3	-157.5
DC-coupled	11.9	-145.5	-155.5

Note Noise spectral density is verified using a 50 Ω terminator connected to the input.

⁶ Normalized to 10 MHz.

⁷ Maximum bandwidth for full scale input signal is 400 MHz. See the ADS54J60 datasheet for details on maximum supported amplitude for frequencies greater than 400 MHz.

⁸ Measured with a -1 dBFS signal and corrected to full-scale. 1 kHz resolution bandwidth.

⁹ Calculated from SINAD and corrected to full-scale.

Figure 1. AC-Coupled Single Tone Spectrum (10.1 MHz, -1 dBFS, 1 kHz RBW), Measured

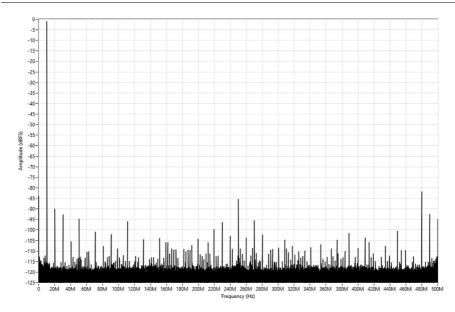
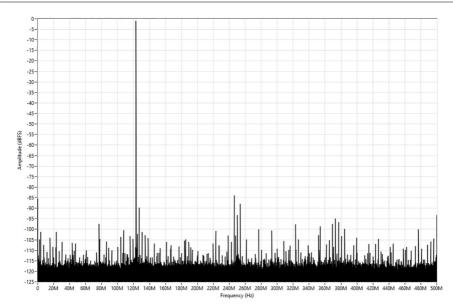
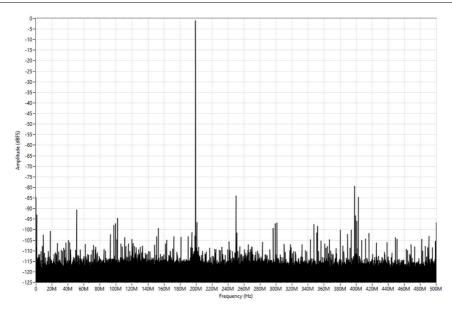
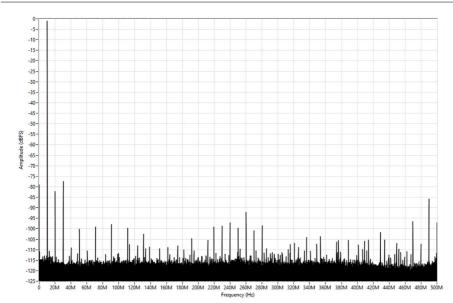
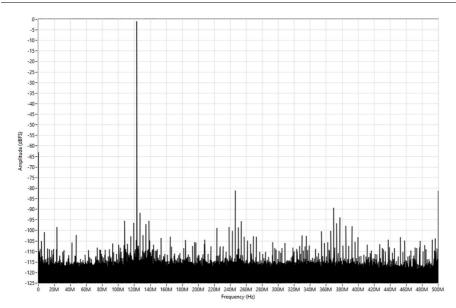



Figure 2. AC-Coupled Single Tone Spectrum (123.1 MHz, -1 dBFS, 1 kHz RBW), Measured

Figure 3. AC-Coupled Single Tone Spectrum (199.1 MHz, -1 dBFS, 1 kHz RBW), Measured

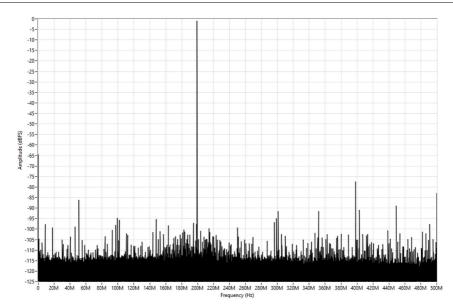

Figure 4. DC-Coupled Single Tone Spectrum (10.1 MHz, -1 dBFS, 1 kHz RBW), Measured

Figure 5. DC-Coupled Single Tone Spectrum (123.1 MHz, -1 dBFS, 1 kHz RBW), Measured

Figure 6. DC-Coupled Single Tone Spectrum (199.1 MHz, -1 dBFS, 1 kHz RBW), Measured

ed, measured	
-87 dB	
-90 dB	
-85 dB	
-84 dB	
Channel-to-channel crosstalk DC-coupled, measured	
-88 dB	
-84 dB	
-75 dB	
-75 dB	

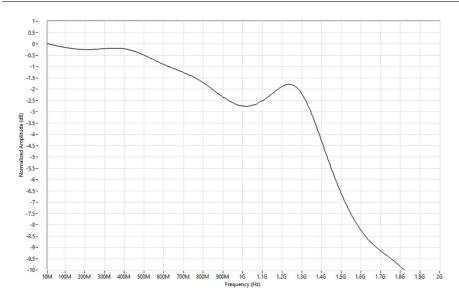
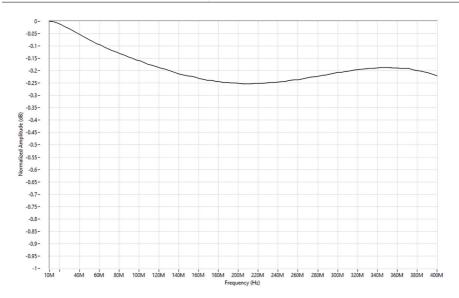



Figure 7. AC-Coupled Frequency Response, Measured

Figure 8. AC-Coupled Passband Flatness for Full Scale Input Supported Frequency Range, Measured

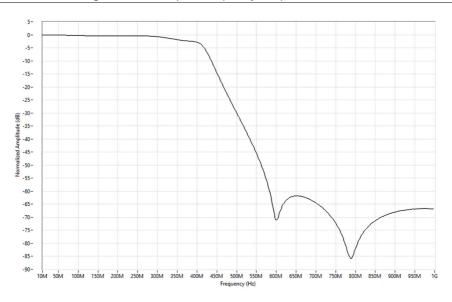


Figure 9. DC-Coupled Frequency Response, Measured

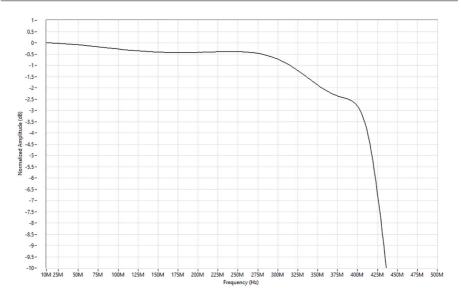
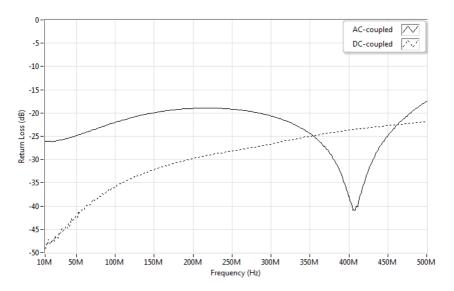
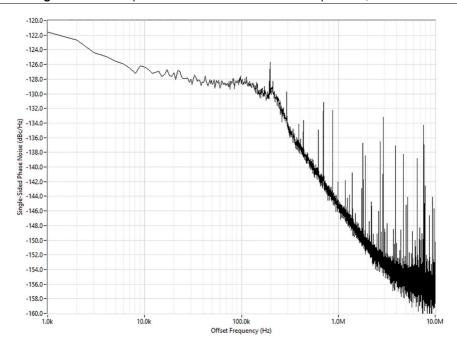
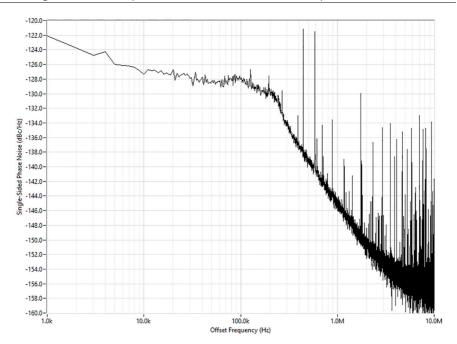



Figure 10. DC-Coupled Frequency Response Zoomed In, Measured

CLK/REF IN


General Characteristics


Connector type	SMA
Input impedance	50 Ω
Input coupling	AC
Reference input voltage range	0.3 V_{pp} to 4 V_{pp}
Sample Clock input voltage range	0.3 V_{pp} to 4 V_{pp}
Absolute maximum voltage	± 12 V DC, 4 V _{pp} AC
Duty cycle	45% to 55%
Onboard reference timebase stability	±0.5 ppm
Sample Clock jitter ¹⁰	
AC-coupled	140 fs RMS
DC-coupled	143 fs RMS

¹⁰ Integrated from 1 kHz to 10 MHz. Includes the effects of the converter aperture uncertainty and the clock circuitry jitter. Excludes trigger jitter.

Clock Configuration	External Clock Type	External Clock Frequency	Description
Internal Reference Clock ¹¹	_	_	The internal Sample Clock locks to an onboard voltage-controlled temperature compensated crystal oscillator (VCTCXO).
Internal PXI_CLK10		10 MHz	The internal Sample Clock locks to the PXI 10 MHz Reference Clock, which is provided through the backplane.
External Reference Clock (CLK/REF IN)	Reference Clock	10 MHz ¹²	The internal Sample Clock locks to an external Reference Clock, which is provided through the CLK/REF IN front panel connector.
External Sample Clock (CLK/REF IN)	Sample Clock	1 GHz	An external Sample Clock can be provided through the CLK/REF IN front panel connector.

Default clock configuration.
The PLL Reference Clock must be accurate to ±25 ppm.

Driver and Application Software

This device is supported in NI LabVIEW Instrument Design Libraries for FlexRIO (instrument design libraries). Instrument design libraries allow you to configure and control the device.

The instrument design libraries provide programming interfaces, documentation, and sample projects for LabVIEW and LabVIEW FPGA Module.

Bus Interface

Form factor

PCI Express Gen-3 x8

Maximum Power Requirements

Note Power requirements are dependent on the contents of the LabVIEW FPGA VI used in your application.

+3.3 V	3 A
+12 V	4 A
Maximum total power	58 W

Physical

Dimensions (not including connectors)	18.8 cm × 12.9 cm (7.4 in. × 5.1 in.)
Weight	190 g (6.7 oz)

Note Clean the hardware with a soft, nonmetallic brush. Make sure that the hardware is completely dry and free of contaminants before returning it to service.

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C ¹³
Relative humidity range	10% to 90%, noncondensing

Storage Environment

Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 4 limits.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

¹³ The PXIe-5764 requires a chassis with slot cooling capacity ≥58 W. Not all chassis with slot cooling capacity ≥58 W can achieve this ambient temperature range. Refer to the *PXI Chassis Manual* for specifications to determine the ambient temperature ranges your chassis can achieve.

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g_{rms} (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.4 g_{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

TCLK Specifications

You can use the NI TClk synchronization method and the NI-TClk driver to align the Sample Clocks on any number of supported devices, in one or more chassis. For more information about TClk synchronization, refer to the *NI-TClk Synchronization Help* within the *FlexRIO Help*. For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support.

Intermodule Synchronization Using NI-TClk for Identical Modules

Synchronization specifications are valid under the following conditions:

- All modules are installed in one PXI Express chassis.
- The NI-TClk driver is used to align the Sample Clocks of each module.
- All parameters are set to identical values for each module.
- Modules are synchronized without using an external Sample Clock.

Note Although you can use NI-TClk to synchronize non-identical modules, these specifications apply only to synchronizing identical modules.

Skew¹⁴

AC-coupled	120 ps, measured
DC-coupled	190 ps, measured

¹⁴ Caused by clock and analog delay differences. No manual adjustment performed. Tested with a PXIe-1085 chassis with a 24 GB backplane with a maximum slot to slot skew of 100 ps. Measured at 23 °C.

Skew after manual adjustment	≤ 10 ps, measured
Sample Clock delay/adjustment	1.5 ps

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: **Help**»**Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2018-2020 National Instruments. All rights reserved.